

Fonction inverse, fonction homographique.

Livre p.122.

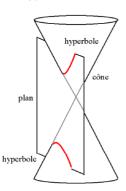
Objectifs:

- Découvrir la fonction inverse et ses premières propriétés
- Découvrir les expressions rationnelles (fonctions homographiques)

Aperçu historique:

Nous avons déjà étudié plusieurs "fonctions de référence" : les fonctions affines (de degré 1) au Chapitre ??, puis la fonction carré et les fonctions polynômes du second degré au Chapitre ??. Nous allons ici nous intéresser à la fonction inverse, définie pour $x \neq 0$ par $f: x \mapsto \frac{1}{x}$.

La représentation graphique de la fonction inverse est une hyperbole; c'est la "trace" d'un plan qui couperait un cone parallèlement à son axe; on peut en avoir un aperçu en plaçant un spot lumineux près d'un mur : le mur vertical "coupe" le cône de lumière selon une hyperbole.



1. La fonction inverse

Définition 12.1 La fonction inverse est la fonction qui, à tout réel non nul associe son inverse.

Pour
$$x \neq 0$$
, $f(x) = \frac{1}{x}$

Propriété 12.1 La fonction inverse est décroissante sur \mathbb{R}_+^* et sur \mathbb{R}_+^* .

Démonstration Soit a et b deux réels strictement négatifs tels que a < b. Étudions le signe de $\frac{1}{a} - \frac{1}{b}$: $\frac{1}{a} - \frac{1}{b} = \frac{b}{ab} - \frac{a}{ab} = \frac{b-a}{ab}$. Or a et b sont négatifs donc ab > 0. De plus a < b donc b-a > 0. Donc $\frac{1}{a} - \frac{1}{b}$ est égal au quotient de deux réels positifs; c'est donc un réel positif. Donc $\frac{1}{a} - \frac{1}{b} > 0$; ainsi, $\frac{1}{a} > \frac{1}{b}$. Les nombres a et b et leurs images sont donc rangés dans l'ordre inverse : la fonction inverse est décroissante sur \mathbb{R}_+^* . On démontrerait de même que la fonction inverse est décroissante sur \mathbb{R}_+^* .

Remarque:

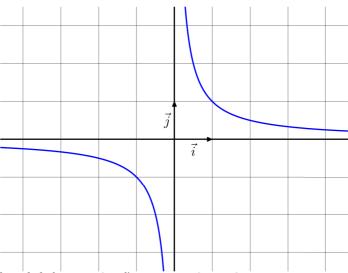
Attention! La fonction inverse n'est pas décroissante sur \mathbb{R}^* .

En effet, on a : -2 < 2 et $\frac{1}{-2} < \frac{1}{2}$: les images de -2 et 2 sont rangés dans le même ordre que -2 et 2.

Tableau de variations:

$+\infty$ x -00 0

Courbe représentative :



La courbe représentative de la fonction inverse est une hyperbole de centre O et d'asymptotes (Ox) et (Oy).

2. Expressions rationnelles

Exemple Soit f la fonction définie par $f(x) = \frac{3x-5}{x-2}$. On note \mathcal{C}_f sa courbe représentative dans un repère $(O; \vec{i}, \vec{j})$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que pour $x \in \mathcal{D}_f$, on a $f(x) = 3 + \frac{1}{x-2}$.
- 3. Déterminer les coordonnées des points d'intersection de \mathscr{C}_f avec les axes du repère.
- 4. Étudier les variations de f sur $]-\infty$; 2[puis sur]2; $+\infty$ [.
- 5. En se limitant à l'ensemble $[-3; 2] \cup [2; 7]$, dresser le tableau de variations de f, puis un tableau de valeurs et enfin la courbe représentative de f dans un repère.
- 1. f(x) existe pour $x-2 \neq 0$ soit $x \neq 2$: x = 2 est une valeur interdite pour f. Donc $\mathcal{D}_f =]-\infty; 2[\cup]2; +\infty[.$
- 2. On a: $3 + \frac{1}{x-2} = \frac{3(x-2)}{x-2} + \frac{1}{x-2} = \frac{3x-6+1}{x-2} = \frac{3x-5}{x-2} = f(x)$.
- 3. Le point d'intersection A de \mathscr{C}_f avec l'axe des ordonnées a pour abscisse $x_A = 0$ et donc pour ordonnée $y_A = f(0) = \frac{5}{2}$. Donc $A\left(0; \frac{5}{2}\right)$.

Les points d'intersection de \mathscr{C}_f avec l'axe des abscisses ont pour ordonnée 0. On résout donc l'équation f(x) = 0. Un quotient est nul si et seulement si son dénominateur n'est pas nul et son numérateur est nul. Donc pour $x \neq 2$, f(x) = 0 si et seulement si 3x - 5 = 0 soit $x = \frac{5}{3}$. Donc \mathcal{C}_f coupe (Ox) en un seul point : $B\left(\frac{5}{3};0\right)$.

4. Pour étudier les variations de f, on utilise l'expression de f(x) trouvée à la question 2.

Soit a et b deux réels tels que a < b < 2.

On a: a < b < 2On soustrait 2:

La fonction $x \mapsto \frac{1}{x}$ est décroissante sur \mathbb{R}^*_- Donc: a-2 < b-2 < 0

On ajoute 3:

Donc: $\frac{1}{a-2} > \frac{1}{b-2}$ Donc: $3 + \frac{1}{a-2} > 3 + \frac{1}{b-2}$ f(a) > f(b)D'où:

Donc la fonction f est strictement décroissante sur $]-\infty; 2[$.

De même, soit a et b deux réels tels que 2 < a < b.

On a: 2 < a < bOn soustrait 2:

La fonction $x \mapsto \frac{1}{x}$ est décroissante sur \mathbb{R}_+^* Donc: 0 < a - 2 < b - 2

On ajoute 3:

Donc: $\frac{1}{a-2} > \frac{1}{b-2}$ Donc: $3 + \frac{1}{a-2} > 3 + \frac{1}{b-2}$ D'où: f(a) > f(b)

Donc la fonction f est strictement décroissante sur $]2; +\infty[$.

5. On en déduit le tableau de variations :

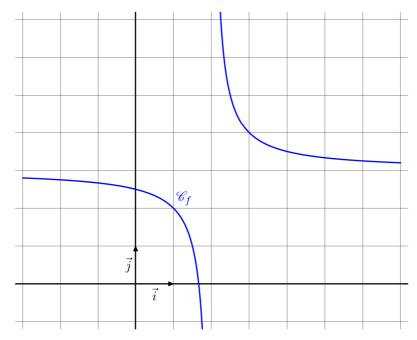
Tableau de variations :

x	-3	2	7
f	2,8 <	\	3,2

Tableau de valeurs :

X	-3	0	1	3	4	7
f(x)	2,8	$\frac{5}{2}$	2	4	$\frac{7}{2}$	3,2

Courbe représentative :



Définition 12.2 Une fonction f est dite *homographique* s'il existe des réels a, b, c, et d, avec $c \neq 0$, tels que f puisse s'écrire sous la forme $f(x) = \frac{ax+b}{cx+d}$ pour tout réel x n'annulant pas le dénominateur.

Exemple La fonction f définie par $f(x) = \frac{3x-5}{x-2}$ vue à l'exemple précédent est une fonction homographique. Son domaine de définition est $D_f = \mathbb{R} - \{2\}$.

Remarque:

Soient f définie par $f(x) = \frac{ax+b}{cx+d}$, et D_f son domaine de définition. Pour tout $x \in D_f$, on a :

Four tout $x \in D_f$, on a. $ax + b = \frac{a}{c}(cx + d) + (b - \frac{ad}{c}), \text{ donc}:$ $\frac{ax + b}{cx + d} = \frac{\frac{a}{c}(cx + d)}{cx + d} + \frac{(b - \frac{ad}{c})}{cx + d}, \text{ d'où}:$ $f(x) = \frac{a}{c} + \frac{(b - \frac{ad}{c})}{cx + d}, \text{ c'est-à-dire}:$ $f(x) - \frac{a}{c} = \frac{(b - \frac{ad}{c})}{cx + d} \text{ En posant } \alpha = b - \frac{ad}{c}, X = cx + d \text{ et } Y = f(x) - \frac{a}{c}, \text{ cette dernière égalité devient } Y = \frac{\alpha}{X}; \text{ l'allure et le sens de variation seront donc les mêmes que ceux d'une fonction inverse, éventuellement multipliée par une constante.}$